Applications

Examples of materials that can be characterized by analytical pyrolysis

Analytical pyrolysis may be applied to any kind of sample that contains a meaningful amount of organic matter (a few % by weight). It is most suitable for the analysis of natural and synthetic polymers and macromolecules that cannot be assessed by alternative approaches due to insolubility or excessive molecular weight. Some of the types of samples frequently assessed by Pyrolyscience:

  • Soil organic matter –  SOM (agricultural soils, forest soils, anthropogenic dark earths).
  • Microplastics (identification of polymer type of picked fragments and plastics content  assessment in environmental samples)
  • Dissolved organic matter – DOM (in marine, freshwater and soil environments)
  • Archaeological remains and artefacts (unknown materials, ceramics, jewels, bones)
Analytical pyrolysis, and especially Py-GC-MS, has been successfully applied to myriad kinds of organic materials. In the folowing section applications in the fields of Earth and Heritage Sciences are illustrated based on previous services provided by Pyrolyscience, including references to corresponding scientific literature.

References

  1. Kaal, J., Schellekens, J., Nierop, K.G.J., Martínez Cortizas, A., Muller, J., 2014. Contribution of organic matter molecular proxies to interpretation of the last 55 ka of the Lynch’s Crater record (NE Australia). Palaeogeography, Palaeoclimatology, Palaeoecology 414, 20-31.
  2. Kylander, M., Martinez Cortizas, A., Bindler, R., Kaal, J., Sjöstrom, J., Hansson, S., Silva Sánchez, N., Greenwood, S., Gallagher, K., Rydberg, J., Roth, C.-M., Rauch, S., 2018. Mineral dust as a driver of carbon accumulation in northern latitudes. Scientific Reports 8, 6876, 1-10.
  3. Kaal, J., Baldock, J.A., Buurman, P., Nierop, K.G.J., Pontevedra-Pombal, X., Martínez-Cortizas, A., 2007. Evaluating pyrolysis-GC/MS and 13C CPMAS NMR in conjunction with a molecular mixing model of the Penido Vello peat deposit, NW Spain. Organic Geochemistry 38, 1097-1111.
  4. Kaal, J., 2011. Identification, molecular characterisation and significance of fire residues in colluvial soils from Campo Lameiro (NW Spain). PhD Thesis. Available online at: http://digital.csic.es/handle/10261/35227.
  5. Kaal, J., Martínez Cortizas, A., Eckmeier, E., Costa Casais, M., Santos Estévez, M., Criado Boado, F., 2008. Holocene fire history of black colluvial soils revealed by pyrolysis-GC/MS: a case study from Campo Lameiro (NW Spain). Journal of Archaeological Science 35, 2133-2143.
  6. Kaal, J., Martínez Cortizas, A., Buurman, P., Criado Boado, F., 2008. 8000 years of black carbon accumulation in a colluvial soil from NW Spain. Quaternary Research 69, 56-61.
  7. Kaal, J., Martínez Cortizas, A., Nierop, K.G.J., Buurman, P., 2008. A detailed pyrolysis-GC/MS analysis of a black carbon-rich acidic colluvial soil (Atlantic ranker) from NW Spain. Applied Geochemistry 23, 2395-2405.
  8. Suarez Abelenda, M., Kaal, J., Camps Arbestain, M., Knicker, H., Macias, F., 2014. Molecular characteristics of permanganate- and dichromate- oxidation-resistant soil organic matter from a black-C-rich colluvial soil. Soil Research 52, 164-179.
  9. Kaal, J., Martínez Cortizas, A., 2019. Naturally halogenated organic matter in Atlantic rankers is concentrated in microbial rather than pyrogenic moieties. Analytical Pyrolysis Letters APL005, 1-6. https://pyrolyscience.com/apl005/.
  10. Kaal, J., Buurman, P., Nierop, K.G.J., Piccolo, A. Selective preservation of carbohydrates in volcanic ash soils European Geosciences Union, General Assembly, 19-24 April 2009, Vienna, Austria.
  11. Nierop, K.G.J., Kaal, J., Jansen, B., Naafs, D.F.W. Organic matter protection as affected by the mineral soil matrix: allophanic vs. non-allophanic volcanic ash soils. European Geosciences Union, General Assembly, 19-24 April 2009, Vienna, Austria.
  12. Weiss, N., Kaal, J. 2018. Characterization of labile organic matter in Pleistocene permafrost (NE Siberia), using Thermally assisted Hydrolysis and Methylation (THM-GCMS). Soil Biology and Biochemistry 117, 203-213.
  13. (unp) Molecular characterization of organic matter in peat and ice-polygons from the Batagaika megaslump (w/ Yurij Vasil’chuk).
  14. (unp) SOM composition of modern and archaeological paddy soils from S China (w/ Liu Zhanfeng).
  15. Suárez Abelenda, M., Buurman, P., Camps Arbestain, M., Kaal, J., Martínez-Cortizas, A., Gartzia-Bengoetxea, N., Macías, F., 2011. Comparing NaOH-extractable organic matter of acid forest soils that differ in their pedogenic trends: a pyrolysis-GC/MS study. European Journal of Soil Science 62, 834-848.
  16. Ferro Vázquez, C., Kaal, J., Santos Arevalo, F., Criado Boado, F., 2018. Molecular fingerprinting of 14C dated soil organic matter fractions from archaeological settings in NW Spain. Radiocarbon 61, 101-130.
  17. Kaal, J., Linderholm, J., Martínez Cortizas, A., 2019. Fire, meat and totarol: organic matter in the embankments of the Neolithic site Bastuloken (North Sweden). Analytical Pyrolysis Letters APL007, 1-16. https://pyrolyscience.com/apl007/.
  18. Buurman, P., Nierop, K.G.J., Kaal, J., Senesi, N., 2009. Analytical pyrolysis and thermally assisted hydrolysis and methylation of Eurosoil humic acid samples – a key to their source. Geoderma 150, 10-22.
  19. Vázquez Polo, J.R., Schellekens, J., Kaal, J., 2015. Composition of the organic matter in soils from six pedoclimatic zones of Magdalena (Colombia). Spanish Journal of Soil Science 5, 243-258.
  20. Kaal, J., Martínez Cortizas, A., Reyes, O., Soliño, M., 2012. Molecular characterization of Ulex europaeus biochar obtained from laboratory heat treatment experiments – A pyrolysis-GC/MS study. Journal of Analytical and Applied Pyrolysis 95, 205-212.
  21. Kaal, J., Schneider, M.P.W., Schmidt, M.W.I., 2012. Rapid molecular screening of black carbon (biochar) thermosequences obtained from chestnut wood and rice straw: A pyrolysis-GC/MS study. Biomass and Bioenergy 45, 115-129.
  22. Kaal, J., Nierop, K.G.J., Kraal, P., Preston, C.M., 2012. A first step towards identification of tannin-derived black carbon: conventional pyrolysis (Py-GC-MS) and thermally assisted hydrolysis and methylation (THM-GC-MS) of charred condensed tannins. Organic Geochemistry 47, 99-108.
  23. Reyes, O., Kaal, J., Arán Ferreiro, D., Gago, R., Bernal, J., García, X., Basanta, M., 2015. The effects of ash and Black Carbon (biochar) on germination of different tree species. Fire Ecology 11, 119-133.
  24. Suárez Abelenda, M., McBeath, A., Kaal, J., 2017. Translating analytical pyrolysis fingerprints to Thermal Stability Indices (TSI) to improve biochar characterization by pyrolysis-GC-MS. Biomass and Bioenergy 98, 306-320.
  25. Keitel, C., Ascough, P., Bird, M., Camps Arbestain, M., Cornelissen, G., Donne, S., Gao, X., Graber, E.R., Joseph, S., Johnston, C.T., Kaal, J., Kookana, R., Lehmann, J., Masiello, C., McBeath, A., Meredith, W., Novak, J., Possell, M., Singh, B., Smernik, R., Sohi, S., Wurster, C., Van Zwieten, L., 2015. Methods of biochar analysis for environmental applications. Combio 2015, Australia.
  26. Kaal, J., Calvelo Pereira, R., 2017. Pyrolysis-GC-MS of Biochar. In: Biochar: A Guide to Analytical Methods. CRC Press, pp. 170-186.
  27. Calvelo Pereira, R., Kaal, J., Camps Arbestain, M., Pardo Lorenzo, R., Aitkenhead, W., Hedley, M., Macías, F., Hindmarsh, J., Maciá-Agulló, J.A., 2011. Contribution to characterisation of biochar to estimate the labile fraction of carbon. Organic Geochemistry 42, 1331-1342.
  28. Herath, H.M.S.K., Camps Arbestain, M., Hedley, M., Van Hale, R., Kaal, J., 2014. Fate of biochar in chemically- and physically-defined soil organic carbon pools. Organic Geochemistry 73, 35-46.
  29. Kaal, J., Donnelly, A., McBeath, A., Martínez Cortizas, A., Calvelo Pereira, R., McLaughlin, H., 2017. Multi-methodological characterisation of Costa Rican biochars from small-scale retort and top-lit updraft stoves and inter-methodological comparison. Journal of Agriculture and Rural Development in the Tropics and Subtropics 118, 1-15.
  30. Kaal, J., Nierop, K.G.J., Martínez Cortizas, A., 2009. Characterisation of aged charcoal using a coil probe pyrolysis-GC/MS method optimised for Black Carbon. Journal of Analytical and Applied Pyrolysis 85, 408-416.
  31. Kaal, J., Brodowski, S., Baldock, J.A., Nierop, K.G.J., Cortizas, A.M., 2008. Characterisation of aged black carbon using pyrolysis-GC/MS, thermally assisted hydrolysis and methylation (THM), direct and cross-polarisation 13C nuclear magnetic resonance (DP/CP NMR) and the benzenepolycarboxylic acid (BPCA) method. Organic Geochemistry 39, 1415-1426.
  32. Kaal, J., Martínez Cortizas, A., Nierop, K.G.J., 2009. Characterisation of aged charcoal using a coil probe pyrolysis-GC/MS method optimised for black carbon. Journal of Analytical and Applied Pyrolysis 85, 408-416.
  33. Calvelo Pereira, R., Camps Arbestain, M., Kaal, J., Vázquez Sueiro, M., Sevilla, M., Hindmarsh, J., 2014. Detailed carbon chemistry in charcoals from pre-European Māori gardens of New Zealand as a tool for understanding biochar stability in soils. European Journal of Soil Science 65, 83-95.
  34. Kaal, J., Filley, T., 2016. Novel molecular proxies for inferring pyrogenic black carbon oxidation state using thermally assisted hydrolysis and methylation (THM-GC-MS) with 13C-labeled tetramethylammonium hydroxide (TMAH). Journal of Analytical and Applied Pyrolysis 121, 146-154.
  35. Kaal, J., Rumpel, C., 2009. Can pyrolysis-GC/MS be used to estimate the degree of thermal alteration of black carbon? Organic Geochemistry 40, 1179-1187.
  36. Traoré, M., Kaal, J., Martínez Cortizas, A., 2017. Potential of pyrolysis-GC-MS molecular fingerprint as a proxy of Modern Age Iberian shipwreck wood preservation. Journal of Analytical and Applied Pyrolysis 126, 1-13.
  37. Traoré, M., Kaal, J., Martínez Cortizas, A., 2018. Chemometric tools for identification of wood from different oak species and their potential for provenancing of Iberian shipwrecks (16th-18th centuries AD). Journal of Archaeological Science 100, 62-73.
  38. Traoré, M., Kaal, J., Martínez Cortizas, A., 2023. Variation of wood color and chemical composition in the stem cross-section of oak (Quercus spp.) trees, with special attention to the sapwood-heartwood transition zone. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 285, 121893.
  39. (unp) Biomarkers in ethnographically relevant plant species from the Uruguayan lowlands (w/ Camila Gianotti).
  40. Kaal, J., Oliveira, C., Martín Seijo, M., Mayo Torné, J., Mayo Torné, C., 2018. Resinous artefacts of the burial goods of El Caño (Panama): analytical protocol and preliminary results. 56º Congreso Internacional de Americanistas, Salamanca.
  41. Nierop, K.G.J., Preston, C.M., Kaal, J., 2005. Thermally assisted hydrolysis and methylation of purified tannins from plants. Analytical Chemistry 77, 5604-5614.
  42. Kaal, J., Hasiah Abdullah, W., Makeen, Y., Azlan Mustapha, K., Asiwaju, L., Sia, S.-G., Almendros, G., 2017. Effects of maturity on the pyrolytic fingerprint of coals from North Borneo. International Journal of Coal Geology 182, 1-13.
  43. (unp) Kerogen analysis from As Pontes lignite sequences bearing cyclicity in environmental conditions (w/ Antonio martínez Cortizas).
  44. Kaal, J., Rodríguez-Lado, L., 2023. Molecular characterization of Asian hornet paper envelope nests. Analytical Pyrolysis Letters APL009, 1-11. https://pyrolyscience.com/apl009/ 
  45. Sanjurjo-Sánchez, J., Arce Chamorro, C., Vidal Romaní, J.R., Vaqueiro Rodríguez, M., Barrientos, V., Kaal, J., 2021. On the genesis of aluminum-rich speleothems in a granite cave of NW Spain. International Journal of Speleology 50, 25-40.
  46. (unp) Rapid screening of source materials in coprolites (w/ Jamie Wood)
  47. (unp) Depth trends in DOM composition in a Mediterranean-Atlantic interface region (w/ Anton Salgado and Mar Nieto-Cid).
  48. Zúñiga, D., Kaal, J., Villacieros-Robineau, N., Froján, M., Alonso-Pérez, F., De la Granda, F., Castro, C.G, 2019.Tracing sinking organic matter sources in the NW Iberian coastal upwelling system (NE Atlantic Ocean). Journal of Analytical and Applied Pyrolysis 139, 114-132.
  49. Kaal, J., Serrano, O., Nierop, K.G.J., Schellekens, J., Martínez Cortizas, A., Mateo, M.-A., 2016. Molecular composition of plant parts and sediment organic matter in a Mediterranean seagrass (Posidonia oceanica) mat. Aquatic Botany 133, 50-61.
  50. Kaal , J., Serrano, O., Del Río, J.C., Rencoret, J., 2018. Radically different lignin composition in Posidonia species may link to differences in organic carbon sequestration capacity. Organic Geochemistry 124, 247-256.
  51. Kaal, J., Wagner, S., Jaffé, R., 2016. Molecular properties of ultrafiltered dissolved organic matter and dissolved black carbon in headwater streams as determined by pyrolysis-GC-MS. Journal of Analytical and Applied Pyrolysis 118, 181-191.
  52. Jiang, T., Kaal, J., Liang, J., Zhang, Y., Wei, S., Wang, D., Green, N., 2017. Composition of dissolved organic matter (DOM) from periodically submerged soils in the Three Gorges Reservoir areas as determined by elemental and optical analysis, infrared spectroscopy, pyrolysis-GC-MS and thermally assisted hydrolysis and methylation. Science of the Total Environment 603-604, 461-471.
  53. Kaal, J. Martinez-Cortizas, A., Biester, H. 2017. Downstream changes in molecular composition of DOM along a headwaterstream in the Harz mountains (Central Germany) as determined by FTIR, Pyrolysis-GC–MS and THM-GC–MS. Journal of Analytical and Applied Pyrolysis 126, 50-61.
  54. Rozas Muñiz, I., Taboada Rodríguez, T., Kaal, J., Silva Sánchez, N., Martínez Cortizas, A., 2011. Geochemical signals in the lake sediments of Limnopolar lake (Byers Peninsula, Livingstone Island, South Shetland Island, Antarctica). III Congreso Ibérico de la I.P.A.: Criosferas, Suelos Congelados y Cambio climático. Piornedo (Lugo, España), June 2011.
  55. (unp) Pyrolysis-GC-MS of the Arturo lake sediment (w/ Harald Biester).
  56. Kaal, J., Martínez Cortizas, A., Rydberg, J., Bigler, C., 2015. Seasonal changes in molecular composition of organic matter in lake sediment trap material from Nylandssjön, Sweden. Organic Geochemistry 83-84, 253-262.
  57. (unp) Biogeochemistry of an island lagoon at Islas Cíes (NW Spain) (w/ Nerea Piñeiro).2019.
  58. Kaal, J., González-Pérez, J.A., San Emeterio, L.A., Serrano, O., 2022. Fingerprinting macrophyte Blue Carbon by pyrolysis-GC-compound specific isotope analysis (Py-CSIA). Science of The Total Environment 836, 155598.
  59. Zhang, J., Kuang, L., Mou, Z., Kondo, T., Koarashi, J., Atarashi-Andoh, M., Li, Y., Tang, X., Wang, Y.-P., Peñuelas, J., Sardans, J., Hui, D., Lambers, H., Wu, W., Kaal, J., Li, J., Liang, N., Liu, Z., 2022. Ten years of warming increased plant-derived carbon accumulation in an East Asian monsoon forest. Plant and Soil 481, 349–365.
  60. Kaal, J., Plaza, C., Nierop, K.G.J., Pérez-Rodríguez, M., Biester, H., 2020. Origin of dissolved organic matter in the Harz Mountains (Germany): A thermally assisted hydrolysis and methylation (THM-GC–MS) study. Geoderma 378, 114635.
  61. Kaal, J., Pérez-Rodríguez, M., Biester, H. 2022. Molecular probing of DOM indicates a key role of spruce-derived lignin in the DOM and metal cycles of a headwater catchment: Can spruce forest dieback exacerbate future trends in the browning of Central European surface waters? Environmental Science & Technology 56, 2747–2759.
  62. Kaal, J., Plaza, C., Pérez-Rodríguez, M., Biester, H., 2020. Towards understanding ecological disaster in the Harz Mountains (Central Germany) by carbon tracing: pyrolysis-GC-MS of biological tissues and their water-extractable organic matter (WEOM). Analytical Pyrolysis Letters, APL008, 1-17. https://pyrolyscience.com/apl008/.
  63. Jiang, T., Kaal, K., Liu, J., Liang, J., Zhang, Y., Wang, D., 2020. Linking the electron donation capacity to the molecular composition of soil dissolved organic matter from the Three Gorges Reservoir areas, China. Journal of Environmental Sciences 90, 146-156.
  64. Yang, K., Zhang, Y., Dong, Y., Peng, J., Kaal, J., Li, W., Ma, X., Nie, Z., 2021. . Tracking variations in the abundance and composition of dissolved organic matter in solar ponds of oilfield-produced brine. Applied Geochemistry 131, 105008.
  65. Martínez Cortizas, A., Sjöström, J.K., Ryberg, E.E.,  Kylander, M.E., Kaal, J., López‐Costas, O., Álvarez Fernández, N., Bindler, R., 2021. 9000 years of changes in peat organic matter composition in Store Mosse (Sweden) traced using FTIR‐ATR. Boreas 50, 1161-1178.
  66. Gusiatin, Z.M., Kaal, J., Wasilewska, A., Kumpiene, J., Radziemska, M., 2021. Short-term soil flushing with tannic acid and its effect on metal mobilization and selected properties of calcareous soil. International Journal of Environmeental Research and Public Health 18, 5698.
  67. Kaal, J., Serrano, O., Martínez Cortizas, A., Baldock, J.A., Lavery, P.S., 2019. Millennial-scale changes in the molecular composition of Posidonia australis seagrass deposits: implications for blue carbon sequestration. Organic Geochemistry 137, 103898.
  68. Kaal, J., Martínez Cortizas, A., Mateo, M.-A., Serrano, A., 2020. Deciphering organic matter sources and ecological shifts in blue carbon ecosystems based on molecular fingerprinting. Science of The Total Environment 742, 140554.
  69. Kaal, J., Lavery, P.S., Martínez Cortizas, A., López-Costas, O., Buchaca, T., Salinas, C., Serrano, O., 2020. Reconstruction of 7500 years of coastal environmental change impacting seagrass ecosystem dynamics in Oyster Harbour (SW Australia). Palaeogeography, Palaeoclimatology, Palaeoecology 558, 109953.
  70. Piñeiro-Juncal, N., Kaal, J., Fornazier Moreira, J.C., Martínez Cortizas, A., Rodrigues Lambais, M., Otero, X.L., Mateo, M.-A., 2021. Cover loss in a seagrass Posidonia oceanica meadow accelerates soil organic matter turnover and alters soil prokaryotic communities. Organic Geochemistry 151, 104140.
  71. Rencoret, J., Marques, G., Serrano, O., Kaal, J., Martínez, A.T., del Río, J.C., Gutiérrez, A., 2020. Deciphering the unique structure and acylation pattern of Posidonia oceanica lignin. ACS Sustainable Chemistry & Engineering 8, 12521-12533.
  72. Alba-González, P., Álvarez-Salgado, X.A., Cobelo-García, A., Kaal, J., Teira, E., 2022. Faeces of marine birds and mammals as substrates for microbial plankton communities. Marine Environmental Research 174, 105560.
  73. Kaal, J., Martínez-Pillado, V., Martínez Cortizas, A., Sanjurjo Sánchez, J., Aranburu, A., Arsuaga, J.-L., Iriarte, E., 2021. Bacteria, guano and soot: Source assessment of organic matter preserved in black laminae in stalagmites from caves of the Sierra de Atapuerca (N Spain). International Journal of Speleology 50, 121-135.
  74. Kaal, J.,  Goñi-Urtiaga, A., Wenig, P., Veliu, M., Moreno-Jiménez, E., Plaza, C.,  Panettieri, M., 2023. Simultaneous molecular fingerprinting of natural organic matter and synthetic polymers (PE, PET, PP, PS and PVC) using analytical pyrolysis. Journal of Analytical and Applied Pyrolysis 175, 106159.
  75. Gutiérrez-Barral, A., Teira, E., Díaz-Alonso, A., Justel-Díez, M., Kaal, J., Fernández, 2024. Impact of wildfire ash on bacterioplankton abundance and community composition in a coastal embayment (Ría de Vigo, NW Spain). Marine Environmental Research 194, 106317.
  76. Sjöström, J.K., Martínez Cortizas, A., Nylund, A., Hardman, A., Kaal, J., Smittenberg, R.H., Risberg, J., Schillereff, D., Norström, E., 2023. Complex evolution of Holocene hydroclimate, fire and vegetation revealed by molecular, minerogenic and biogenic proxies, Marais Geluk wetland, eastern Free State, South Africa. Quaternary Science Reviews 314, 108216.
  77. Traoré, M., Kaal, J., Martínez Cortizas, A., 2023. Variation of wood color and chemical composition in the stem cross-section of oak (Quercus spp.) trees, with special attention to the sapwood-heartwood transition zone. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 285, 121893
  78. Kaal, J., CSIC-PROINSA Mussel Lab Team, 2018. Sources of organic detritus under mussel farms in the Ría de Ares-Betanzos. Analytical Pyrolysis Letters, APL003. https://pyrolyscience.com/apl003/

References

  1. Kaal, J., Lantes Suárez, O., Martínez Cortizas, A, Prieto, B., Prieto Martínez, M.P., 2014. How useful is pyrolysis-GC-MS for the assessment of molecular properties of organic matter in archaeological pottery matrix? An exploratory case study from NW Spain. Archaeometry 56, 187-207.
  2. Sanjurjo Sánchez, J., Kaal, J., Montero Fenollós, J.L., 2018. Organic matter from bevelled rim bowls of the Middle Euphrates: Results from molecular characterization using pyrolysis-GC–MS. Microchemical Journal 141, 1-6.
  3. (unpublished) Analysis of pitch sealants on pottery from Mesopotamia (w/ Jorge Sanjurjo)
  4. Kaal, J., Gilmore, Z., 2018. Itla-okla (Tillandsia osneoides) fibre temper in Pre-Columbian ceramics. Analytical Pyrolysis Letters APL002.
  5. Kaal, J., Martín Seijo, M., Oliveira, C., Wagner-Wysiecka, E., McCoy, V.E., Solórzano Kraemer, M.M., Kerner, A., Wenig, P., Mayo, C., Mayo, J., 2020. Golden artefacts, resin figurines, body adhesives and tomb sediments from the pre-Columbian burial site El Caño (Gran Coclé, Panamá): Tracing organic contents using molecular archaeometry. Journal of Archaeological Science, 113, 105045.
  6. Armada, X.-L., García Vuelta, O., Kaal, J., Martín Seijo, M., Porto, Y., 2016. Characterization of cores and organic remains in Iron Age gold objects: The Recouso Treasure. Materials and Manufacturing Processes 32, 740-748.
  7. (unpublished) Household wood from Banco de España excavation analysis (w/ Yolanda porto)
  8. Martín-Seijo, M., Sartal Lorenzo, M., Kaal, J., Teira-Brión, A., 2021. A multi-disciplinary study of woodcrafts and plant remains that reveals the history of Pontevedra’s harbour (northwest Iberia) between the 13th and 19th centuries AD. Environmental Archaeology 26, 192-208.
  9. Traoré, M., Kaal, J., Martínez Cortizas, A., 2017. Potential of pyrolysis-GC–MS molecular fingerprint as a proxy of Modern Age Iberian shipwreck wood preservation. Journal of Analytical and Applied Pyrolysis 126, 1-13.
  10. Traoré, M., Kaal, J., Martínez Cortizas, A., 2016. Application of FTIR spectroscopy to the characterization of archeological wood. Spectrochimica Acta A 156, 63-70.
  11. Traoré, M., Kaal, J., Martínez Cortizas, A., 2018. Chemometric tools for identification of wood from different oak species and their potential for provenancing of Iberian shipwrecks (16th-18th centuries AD). Journal of Archaeological Science 100, 62-73.
  12. Kaal, J., Martínez Cortizas, A., Reyes, O., Soliño, M., 2012. Molecular characterization of Ulex europaeus biochar obtained from laboratory heat treatment experiments – A pyrolysis-GC/MS study. Journal of Analytical and Applied Pyrolysis 95, 205-212.
  13. Kaal, J., Rumpel, C., 2009. Can pyrolysis-GC/MS be used to estimate the degree of thermal alteration of black carbon? Organic Geochemistry 40, 1179-1187.
  14. Suárez Abelenda, M., McBeath, A., Kaal, J., 2017. Translating analytical pyrolysis fingerprints to Thermal Stability Indices (TSI) to improve biochar characterization by pyrolysis-GC-MS. Biomass and Bioenergy 98, 306-320.
  15. Kaal, J., Donnelly, A., McBeath, A., Martínez Cortizas, A., Calvelo Pereira, R., McLaughlin, H., 2017. Multi-methodological characterisation of Costa Rican biochars from small-scale retort and top-lit updraft stoves and inter-methodological comparison. Journal of Agriculture and Rural Development in the Tropics and Subtropics 118, 1-15.
  16. Kaal, J., López Costas, O., Martínez Cortizas, A., 2016. Diagenetic effects on pyrolysis fingerprints of extracted collagen in archaeological human bones from NW Spain, as determined by pyrolysis-GC-MS. Journal of Archaeological Science 65, 1-10.
  17. Lantes Suárez, O., Kaal, J., González Pazos, A., Antón Segurado, R., Fernández Cereijo, I., Mariño Calvo, V., Domínguez Lago, A., in press. El Arrepentimiento de San Pedro, de Francisco Collantes. Restauración y análisis de pigmentos. GE-Conservación 14, 38-51.
  18. Ferro Vázquez, C., Kaal, J., Santos Arevalo, F., Criado Boado, F., 2018. Molecular fingerprinting of 14C dated soil organic matter fractions from archaeological settings in NW Spain. Radiocarbon 61, 101-130.
  19. Ferro Vázquez, C., Kaal, J., Stump, D., Lang, C., 2017. When is a terrace not a terrace? The importance of understanding landscape evolution in studies of terraced agriculture. Journal of Environmental Management 202, 500-513.
  20. Kaal, J., 2011. Identification, molecular characterisation and significance of fire residues in colluvial soils from Campo Lameiro (NW Spain). PhD Thesis. <http://digital.csic.es/handle/10261/35227>.
  21. Kaal, J., Martínez-Cortizas, A., Buurman, P., Criado Boado, F., 2008. 8000 yr of black carbon accumulation in a colluvial soil from NW Spain. Quaternary Research 69, 56-61.
  22. Kaal, J., Martínez Cortizas, A., Eckmeier, E., Costa Casais, M., Santos Estévez, M., Criado Boado, F., 2008. Holocene fire history of black colluvial soils revealed by pyrolysis-GC/MS: a case study from Campo Lameiro (NW Spain). Journal of Archaeological Science 35, 2133-2143.
  23. Kaal, J., Gianotti, C., Del Puerto, L., Criado-Boado, F., Rivas, M., 2019. Molecular features of organic matter in anthropogenic earthen mounds, canals and lagoons in the Pago Lindo archaeological complex (Tacuarembó, Uruguayan lowlands) are controlled by natural pedogenetic processes and fire practices. Journal of Archaeological Science: Reports 26, 101900.
  24. Kaal, J., Martínez-Pillado, V., Martínez Cortizas, A., Sanjurjo Sánchez, J., Aranburu, A., Arsuaga, J.-L., Iriarte, E., 2021. Bacteria, guano and soot: Source assessment of organic matter preserved in black laminae in stalagmites from caves of the Sierra de Atapuerca (N Spain). International Journal of Speleology 50, 121-135.
  25. (unp) Reconstrucción paleoambiental en las Salinas Romanas de Vigo (w/ Rebeca Tallón Armada)
  26. (unp) Sediment trap strategies in the slopes of Engaruka (Tanzania) (w/ Cruz Ferro Vázquez)
  27. (unp) River adaptations for irrigation of terrace sequences (Ethiopia) (w/ Cruz Ferro Vázquez)
  28. Martín Seijo, M., Kaal, J., Rodríguez Calviño, M., Vázquez Collazo, S., 2019. First fibre identification and analysis of Middle Age textiles in northwest Iberia: the textile remains of the Pambre castle (Palas de Rei, Lugo). Conference: Fibres in Early Textiles from Prehistory to AD 1600, Glasgow, June 2019.
  29. Kaal, J., Mailänder, S., 2018. Molecular properties of soil organic matter in dark buried colluvium from South Germany show abundance of fire residues from Early Neolithic vegetation clearance and slash and burn agriculture. Analytical Pyrolysis Letters APL004, 1-10. https://pyrolyscience.com/apl004/.
  30. Costa Casais, M.,  Martínez Cortizas, A., Kaal, J., Ferro Vázquez, C., Criado Boado, F., 2008. Depósitos coluviales holocenos del NO peninsular: geoarchivos para la reconstrucción de la dinámica geomorfológica. Trabajos de Geomorfología en España, X Reunión Nacional de Geomorfología, Cadiz.
  31. Braadbaart, F., Reidsma, F.H., Roebroeks, W., Chiotti, L., Slon, V., Meyer, M., Théry-Parisot, I., van Hoesel, A., Nierop, K.G.J., Kaal, J., van Os, B., Marquer, L., 2020. Heating histories and taphonomy of ancient fireplaces: A multi-proxy case study from the Upper Palaeolithic sequence of Abri Pataud (Les Eyzies-de-Tayac, France). Journal of Archaeological Science: Reports 33, 102468.
  32. (unp) Detection of birch tar in Mesolithic hearth deposits (w/ Koen Deforce)
  33. (unp) Assessment of photo-degradation of synthetic polymers in designer objects (w/ Massimo Lazzari).
  34. Teira-Brión, A., Kaal, J., Lantes-Suárez, Ó., Oliveira, C., Rodríguez-Corral, J., Romero-Vidal, N., Rey-Castiñeira, J., 2022. Shared Technologies for Pottery and Acorns Processing? Multidisciplinary and Functional Approach to Modular Kilns (February 26, 2022). Available at SSRN: https://ssrn.com/abstract=4044995 or http://dx.doi.org/10.2139/ssrn.4044995.
  35. Kaal, J., Castro González, M.G., Martínez Cortizas, A., Prieto Martínez, M.P., 2021. Use of Thermally Assisted Hydrolysis and Methylation (THM-GC-MS) to unravel influence of pottery production and post-depositional processes on the molecular composition of organic matter in sherds from a complex coastal settlement. Separations 8(9), 140.
  36. Zhu, X., Kaal, J., Traoré, M., Kuang, Y., 2024. Characterization of modern and waterlogged archaeological cypress (Glyptostrobus pensilis) wood: An analytical pyrolysis (Py-GC-MS and THM-GC-MS) and infrared spectroscopy. Journal of Analytical and Applied Pyrolysis, 177, 106347.
  37. Dekoninck,  M., Deforce, K.,  Kaal, J., Out,  W., Van Thienen, V., Buyse, F., Kubiak-Martens, L., Tack, P., Vincze, L., Lycke, S., De Clercq, W., 2024. Fuelling the Roman salt industry. Developing a new multiproxy approach to identify peat fuel from archaeological combustion residue. Journal of Archaeological Science 161, 105892.
  38. Teira-Brión, A., Kaal, J., Lantes-Suárez, O., Oliveira, C., Rodríguez-Corral, J., Romero-Vidal, N., Rey-Castiñeira, J., 2023. Shared technologies for pottery and acorns processing? Multidisciplinary and functional approach to modular kilns. Journal of Archaeological Science: Reports 48, 103877.