Applications

Examples of materials that can be characterized by analytical pyrolysis

Analytical pyrolysis may be applied to any kind of sample that contains a meaningful amount of organic matter (a few % by weight). It is most suitable for the analysis of natural and synthetic polymers that cannot be assessed by non-pyrolytic characterization methods such as LC-MS or GC-MS due to excessive molecular weight. However, analytical pyrolysis can also be used as an easy and rapid sample introduction procedure for volatiles such as terpenoid or oils.

Analytical pyrolysis, and especially Py-GC-MS, has been successfully applied to myriad kinds of organic materials. Analytical pyrolysis is often used for molecular characterization by the plastics (synthetic polymers), cosmetics, pharmaceutical and tobacco industries. In this section applications in the fields of Earth and Heritage Sciences are highlighted by previous experiences. These fields are highly versatile by themselves, and an overview of pyrolysis research is beyond the scope of this site. For the Earth Sciences, the lifeline of analytical pyrolysis is the characterization of soil organic matter (SOM), on the molecular structure of which is provided crucial understanding. Other subjects of numerous studies include DOM, wood, leaf litter, humic substances fractions and kerogen. More recently, analysis of larger numbers of samples and the resultant big datasets allowed analytical pyrolysis in combination with multivariate statistics to become an important tool in palaeoenvironmental reconstructions as well, especially in peat but lately also lake deposits. For the Heritage Sciences, analytical pyrolysis has often been used to characterize paint ingredients, oils and resins, but any organic artefact can be the subject of study.

The diagrams below show materials and settings that have been studied previously, first for Earth Sciences applications (and corresponding references for further reading), and then for the Heritage Sciences. They are limited to the experience of (members of) Pyrolyscience and will be updated periodically as new applications emerge.

References

  1. Kaal, J., Schellekens, J., Nierop, K.G.J., Martínez Cortizas, A., Muller, J., 2014. Contribution of organic matter molecular proxies to interpretation of the last 55 ka of the Lynch’s Crater record (NE Australia). Palaeogeography, Palaeoclimatology, Palaeoecology 414, 20-31.
  2. Kylander, M., Martinez Cortizas, A., Bindler, R., Kaal, J., Sjöstrom, J., Hansson, S., Silva Sánchez, N., Greenwood, S., Gallagher, K., Rydberg, J., Roth, C.-M., Rauch, S., 2018. Mineral dust as a driver of carbon accumulation in northern latitudes. Scientific Reports 8, 6876, 1-10, DOI:10.1038/s41598-018-25162-9.
  3. Kaal, J., Baldock, J.A., Buurman, P., Nierop, K.G.J., Pontevedra-Pombal, X., Martínez-Cortizas, A., 2007. Evaluating pyrolysis-GC/MS and 13C CPMAS NMR in conjunction with a molecular mixing model of the Penido Vello peat deposit, NW Spain. Organic Geochemistry 38, 1097-1111.
  4. Kaal, J., 2011. Identification, molecular characterisation and significance of fire residues in colluvial soils from Campo Lameiro (NW Spain). PhD Thesis. Available online at: http://digital.csic.es/handle/10261/35227.
  5. Kaal, J., Martínez Cortizas, A., Eckmeier, E., Costa Casais, M., Santos Estévez, M., Criado Boado, F., 2008. Holocene fire history of black colluvial soils revealed by pyrolysis-GC/MS: a case study from Campo Lameiro (NW Spain). Journal of Archaeological Science 35, 2133-2143.
  6. Kaal, J., Martínez Cortizas, A., Buurman, P., Criado Boado, F., 2008. 8000 years of black carbon accumulation in a colluvial soil from NW Spain. Quaternary Research 69, 56-61.
  7. Kaal, J., Martínez Cortizas, A., Nierop, K.G.J., Buurman, P., 2008. A detailed pyrolysis-GC/MS analysis of a black carbon-rich acidic colluvial soil (Atlantic ranker) from NW Spain. Applied Geochemistry 23, 2395-2405.
  8. Suarez Abelenda, M., Kaal, J., Camps Arbestain, M., Knicker, H., Macias, F., 2014. Molecular characteristics of permanganate- and dichromate- oxidation-resistant soil organic matter from a black-C-rich colluvial soil. Soil Research 52, 164-179.
  9. Kaal, J., Martínez Cortizas, A., 2019. Naturally halogenated organic matter in Atlantic rankers is concentrated in microbial rather than pyrogenic moieties. Analytical Pyrolysis Letters APL005, 1-6.
  10. Kaal, J., Buurman, P., Nierop, K.G.J., Piccolo, A. Selective preservation of carbohydrates in volcanic ash soils European Geosciences Union, General Assembly, 19-24 April 2009, Vienna, Austria.
  11. Nierop, K.G.J., Kaal, J., Jansen, B., Naafs, D.F.W. Organic matter protection as affected by the mineral soil matrix: allophanic vs. non-allophanic volcanic ash soils. European Geosciences Union, General Assembly, 19-24 April 2009, Vienna, Austria.
  12. Weiss, N., Kaal, J. 2018. Characterization of labile organic matter in Pleistocene permafrost (NE Siberia), using Thermally assisted Hydrolysis and Methylation (THM-GCMS). Soil Biology and Biochemistry 117, 203-213.
  13. (unp) Molecular characterization of organic matter in peat and ice-polygons from the Batagaika megaslump (w/ Yurij Vasil’chuk).
  14. (unp) SOM composition of modern and archaeological paddy soils from S China (w/ Liu Zhanfeng).
  15. Suárez Abelenda, M., Buurman, P., Camps Arbestain, M., Kaal, J., Martínez-Cortizas, A., Gartzia-Bengoetxea, N., Macías, F., 2011. Comparing NaOH-extractable organic matter of acid forest soils that differ in their pedogenic trends: a pyrolysis-GC/MS study. European Journal of Soil Science 62, 834-848.
  16. Ferro Vázquez, C., Kaal, J., Santos Arevalo, F., Criado Boado, F., 2018. Molecular fingerprinting of 14C dated soil organic matter fractions from archaeological settings in NW Spain. Radiocarbon, DOI: 10.1017/RDC.201.
  17. Fire, meat and totarol: characterization of organic matter in the Bastuloken (N Sweden) archaeological sequence using pyrolysis-GC-MS and FTIR (w/ Johan Linderholm).
  18. Buurman, P., Nierop, K.G.J., Kaal, J., Senesi, N., 2009. Analytical pyrolysis and thermally assisted hydrolysis and methylation of Eurosoil humic acid samples – a key to their source. Geoderma 150, 10-22.
  19. Vázquez Polo, J.R., Schellekens, J., Kaal, J., 2015. Composition of the organic matter in soils from six pedoclimatic zones of Magdalena (Colombia). Spanish Journal of Soil Science 5, 243-258.
  20. Kaal, J., Martínez Cortizas, A., Reyes, O., Soliño, M., 2012. Molecular characterization of Ulex europaeus biochar obtained from laboratory heat treatment experiments – A pyrolysis-GC/MS study. Journal of Analytical and Applied Pyrolysis 95, 205-212.
  21. Kaal, J., Schneider, M.P.W., Schmidt, M.W.I., 2012. Rapid molecular screening of black carbon (biochar) thermosequences obtained from chestnut wood and rice straw: A pyrolysis-GC/MS study. Biomass and Bioenergy 45, 115-129.
  22. Kaal, J., Nierop, K.G.J., Kraal, P., Preston, C.M., 2012. A first step towards identification of tannin-derived black carbon: conventional pyrolysis (Py-GC-MS) and thermally assisted hydrolysis and methylation (THM-GC-MS) of charred condensed tannins. Organic Geochemistry 47, 99-108.
  23. Reyes, O., Kaal, J., Arán Ferreiro, D., Gago, R., Bernal, J., García, X., Basanta, M., 2015. The effects of ash and Black Carbon (biochar) on germination of different tree species. Fire Ecology 11, 119-133.
  24. Suárez Abelenda, M., McBeath, A., Kaal, J., 2017. Translating analytical pyrolysis fingerprints to Thermal Stability Indices (TSI) to improve biochar characterization by pyrolysis-GC-MS. Biomass and Bioenergy 98, 306-320.
  25. Keitel, C., Ascough, P., Bird, M., Camps Arbestain, M., Cornelissen, G., Donne, S., Gao, X., Graber, E.R., Joseph, S., Johnston, C.T., Kaal, J., Kookana, R., Lehmann, J., Masiello, C., McBeath, A., Meredith, W., Novak, J., Possell, M., Singh, B., Smernik, R., Sohi, S., Wurster, C., Van Zwieten, L., 2015. Methods of biochar analysis for environmental applications. Combio 2015, Australia.
  26. Kaal, J., Calvelo Pereira, R., 2017. Pyrolysis-GC-MS of Biochar. In: Biochar: A Guide to Analytical Methods. CRC Press, pp. 170-186.
  27. Calvelo Pereira, R., Kaal, J., Camps Arbestain, M., Pardo Lorenzo, R., Aitkenhead, W., Hedley, M., Macías, F., Hindmarsh, J., Maciá-Agulló, J.A., 2011. Contribution to characterisation of biochar to estimate the labile fraction of carbon. Organic Geochemistry 42, 1331-1342.
  28. Herath, H.M.S.K., Camps Arbestain, M., Hedley, M., Van Hale, R., Kaal, J., 2014. Fate of biochar in chemically- and physically-defined soil organic carbon pools. Organic Geochemistry 73, 35-46.
  29. Kaal, J., Donnelly, A., McBeath, A., Martínez Cortizas, A., Calvelo Pereira, R., McLaughlin, H., 2017. Multi-methodological characterisation of Costa Rican biochars from small-scale retort and top-lit updraft stoves and inter-methodological comparison. Journal of Agriculture and Rural Development in the Tropics and Subtropics 118, 1-15.
  30. Kaal, J., Nierop, K.G.J., Martínez Cortizas, A., 2009. Characterisation of aged charcoal using a coil probe pyrolysis-GC/MS method optimised for Black Carbon. Journal of Analytical and Applied Pyrolysis 85, 408-416.
  31. Kaal, J., Brodowski, S., Baldock, J.A., Nierop, K.G.J., Cortizas, A.M., 2008. Characterisation of aged black carbon using pyrolysis-GC/MS, thermally assisted hydrolysis and methylation (THM), direct and cross-polarisation 13C nuclear magnetic resonance (DP/CP NMR) and the benzenepolycarboxylic acid (BPCA) method. Organic Geochemistry 39, 1415-1426.
  32. Kaal, J., Martínez Cortizas, A., Nierop, K.G.J., 2009. Characterisation of aged charcoal using a coil probe pyrolysis-GC/MS method optimised for black carbon. Journal of Analytical and Applied Pyrolysis 85, 408-416.
  33. Calvelo Pereira, R., Camps Arbestain, M., Kaal, J., Vázquez Sueiro, M., Sevilla, M., Hindmarsh, J., 2014. Detailed carbon chemistry in charcoals from pre-European Māori gardens of New Zealand as a tool for understanding biochar stability in soils. European Journal of Soil Science 65, 83-95.
  34. Kaal, J., Filley, T., 2016. Novel molecular proxies for inferring pyrogenic black carbon oxidation state using thermally assisted hydrolysis and methylation (THM-GC-MS) with 13C-labeled tetramethylammonium hydroxide (TMAH). Journal of Analytical and Applied Pyrolysis 121, 146-154.
  35. Kaal, J., Rumpel, C., 2009. Can pyrolysis-GC/MS be used to estimate the degree of thermal alteration of black carbon? Organic Geochemistry 40, 1179-1187.
  36. Traoré, M., Kaal, J., Martínez Cortizas, A., 2017. Potential of pyrolysis-GC-MS molecular fingerprint as a proxy of Modern Age Iberian shipwreck wood preservation. Journal of Analytical and Applied Pyrolysis 126, 1-13.
  37. Traoré, M., Kaal, J., Martínez Cortizas, A., 2018. Chemometric tools for identification of wood from different oak species and their potential for provenancing of Iberian shipwrecks (16th-18th centuries AD). Journal of Archaeological Science 100, 62-73.
  38. (unp). Assessment of Glyptostrobus wood’s molecular composition (w/ Yuan-wen Kuang).
  39. (unp) Biomarkers in ethnographically relevant plant species from the Uruguayan lowlands (w/ Camila Gianotti).
  40. Kaal, J., Oliveira, C., Martín Seijo, M., Mayo Torné, J., Mayo Torné, C., 2018. Resinous artefacts of the burial goods of El Caño (Panama): analytical protocol and preliminary results. 56º Congreso Internacional de Americanistas, Salamanca.
  41. Nierop, K.G.J., Preston, C.M., Kaal, J., 2005. Thermally assisted hydrolysis and methylation of purified tannins from plants. Analytical Chemistry 77, 5604-5614.
  42. Kaal, J., Hasiah Abdullah, W., Makeen, Y., Azlan Mustapha, K., Asiwaju, L., Sia, S.-G., Almendros, G., 2017. Effects of maturity on the pyrolytic fingerprint of coals from North Borneo. International Journal of Coal Geology 182, 1-13.
  43. (unp) Kerogen analysis from As Pontes lignite sequences bearing cyclicity in environmental conditions (w/ Antonio martínez Cortizas).
  44. (unp) Molecular composition of paper from wasp nest envelopes as a proxy of raw material selection by Vespa velutina (w/ Luis Lado)
  45. Sanjurjo-Sánchez, J., Arce Chamorro, C., Vidal Romaní, J.R., Marcos Vaqueiro, M., Barrientos, V., Kaal, J., under review. Al-bearing organic speleothems in a granite cave of NW Iberia: characterization and genesis. Naturwissenschaften.
  46. (unp) Rapid screening of source materials in coprolites (w/ Jamie Wood)
  47. (unp) Depth trends in DOM composition in a Mediterranean-Atlantic interface region (w/ Anton Salgado and Mar Nieto-Cid).
  48. Zúñiga, D., Kaal, J., Villacieros-Robineau, N., Froján, M., Alonso-Pérez, F., De la Granda, F., Castro, C.G, 2019.Tracing sinking organic matter sources in the NW Iberian coastal upwelling system (NE Atlantic Ocean). Journal of Analytical and Applied Pyrolysis 139, 114-132.
  49. Kaal, J., Serrano, O., Nierop, K.G.J., Schellekens, J., Martínez Cortizas, A., Mateo, M.-A., 2016. Molecular composition of plant parts and sediment organic matter in a Mediterranean seagrass (Posidonia oceanica) mat. Aquatic Botany 133, 50-61.
  50. Kaal , J., Serrano, O., Del Río, J.C., Rencoret, J., 2018. Radically different lignin composition in Posidonia species may link to differences in organic carbon sequestration capacity. Organic Geochemistry 124, 247-256.
  51. Kaal, J., Wagner, S., Jaffé, R., 2016. Molecular properties of ultrafiltered dissolved organic matter and dissolved black carbon in headwater streams as determined by pyrolysis-GC-MS. Journal of Analytical and Applied Pyrolysis 118, 181-191.
  52. Jiang, T., Kaal, J., Liang, J., Zhang, Y., Wei, S., Wang, D., Green, N., 2017. Composition of dissolved organic matter (DOM) from periodically submerged soils in the Three Gorges Reservoir areas as determined by elemental and optical analysis, infrared spectroscopy, pyrolysis-GC-MS and thermally assisted hydrolysis and methylation. Science of the Total Environment 603-604, 461-471.
  53. Kaal, J. Martinez-Cortizas, A., Biester, H. 2017. Downstream changes in molecular composition of DOM along a headwaterstream in the Harz mountains (Central Germany) as determined by FTIR, Pyrolysis-GC–MS and THM-GC–MS. Journal of Analytical and Applied Pyrolysis 126, 50-61.
  54. Rozas Muñiz, I., Taboada Rodríguez, T., Kaal, J., Silva Sánchez, N., Martínez Cortizas, A., 2011. Geochemical signals in the lake sediments of Limnopolar lake (Byers Peninsula, Livingstone Island, South Shetland Island, Antarctica). III Congreso Ibérico de la I.P.A.: Criosferas, Suelos Congelados y Cambio climático. Piornedo (Lugo, España), June 2011.
  55. (unp) Pyrolysis-GC-MS of the Arturo lake sediment (w/ Harald Biester).
  56. Kaal, J., Martínez Cortizas, A., Rydberg, J., Bigler, C., 2015. Seasonal changes in molecular composition of organic matter in lake sediment trap material from Nylandssjön, Sweden. Organic Geochemistry 83-84, 253-262.
  57. (unp) Biogeochemistry of an island lagoon at Islas Cíes (NW Spain) (w/ Nerea Piñeiro).2w019

References

  1. Kaal, J., Lantes Suárez, O., Martínez Cortizas, A, Prieto, B., Prieto Martínez, M.P., 2014. How useful is pyrolysis-GC-MS for the assessment of molecular properties of organic matter in archaeological pottery matrix? An exploratory case study from NW Spain. Archaeometry 56, 187-207.
  2. Sanjurjo Sánchez, J., Kaal, J., Montero Fenollós, J.L., 2018. Organic matter from bevelled rim bowls of the Middle Euphrates: Results from molecular characterization using pyrolysis-GC–MS. Microchemical Journal 141, 1-6.
  3. (unpublished) Analysis of pitch sealants on pottery from Mesopotamia (w/ Jorge Sanjurjo)
  4. Kaal, J., Gilmore, Z., 2018. Itla-okla (Tillandsia osneoides) fibre temper in Pre-Columbian ceramics. Analytical Pyrolysis Letters APL002.
  5. Kaal, J., Oliveira, C., Martín Seijo, M., Mayo Torné, J., Mayo Torné, C., 2018. Resinous artefacts of the burial goods of El Caño (Panama): analytical protocol and preliminary results. 56º Congreso Internacional de Americanistas, Salamanca.
  6. Armada, X.-L., García Vuelta, O., Kaal, J., Martín Seijo, M., Porto, Y., 2016. Characterization of Cores and Organic Remains in Iron Age Gold Objects: The Recouso Treasure. Materials and Manufacturing Processes.
  7. (unpublished) Household wood from Banco de España excavation analysis (w/ Yolanda porto)
  8. Martín-Seijo, M., Sartal Lorenzo, M., Kaal, J., Teira-Brión, A., 2018. A multi-disciplinary study of woodcrafts and plant remains that reveals the history of Pontevedra’s harbour (northwest Iberia) between the 13th and 19th centuries AD. Environmental Archaeology, DOI: 10.1080/14614103.2018.1522782.
  9. Traoré, M., Kaal, J., Martínez Cortizas, A., 2017. Potential of pyrolysis-GC–MS molecular fingerprint as a proxy of Modern Age Iberian shipwreck wood preservation. Journal of Analytical and Applied Pyrolysis 126, 1-13.
  10. Traoré, M., Kaal, J., Martínez Cortizas, A., 2016. Application of FTIR spectroscopy to the characterization of archeological wood. Spectrochimica Acta A 156, 63-70.
  11. Traoré, M., Kaal, J., Martínez Cortizas, A., 2018. Chemometric tools for identification of wood from different oak species and their potential for provenancing of Iberian shipwrecks (16th-18th centuries AD). Journal of Archaeological Science 100, 62-73.
  12. Kaal, J., Martínez Cortizas, A., Reyes, O., Soliño, M., 2012. Molecular characterization of Ulex europaeus biochar obtained from laboratory heat treatment experiments – A pyrolysis-GC/MS study. Journal of Analytical and Applied Pyrolysis 95, 205-212.
  13. Kaal, J., Rumpel, C., 2009. Can pyrolysis-GC/MS be used to estimate the degree of thermal alteration of black carbon? Organic Geochemistry 40, 1179-1187.
  14. Suárez Abelenda, M., McBeath, A., Kaal, J., 2017. Translating analytical pyrolysis fingerprints to Thermal Stability Indices (TSI) to improve biochar characterization by pyrolysis-GC-MS. Biomass and Bioenergy 98, 306-320.
  15. Kaal, J., Donnelly, A., McBeath, A., Martínez Cortizas, A., Calvelo Pereira, R., McLaughlin, H., 2017. Multi-
    methodological characterisation of Costa Rican biochars from small-scale retort and top-lit updraft stoves and inter-methodological comparison. Journal of Agriculture and Rural Development in the Tropics and Subtropics 118, 1-15.
  16. Kaal, J., López Costas, O., Martínez Cortizas, A., 2016. Diagenetic effects on pyrolysis fingerprints of extracted collagen in archaeological human bones from NW Spain, as determined by pyrolysis-GC-MS. Journal of Archaeological Science 65, 1-10.
  17. Lantes Suárez, O., Kaal, J., González Pazos, A., Antón Segurado, R., Fernández Cereijo, I., Mariño Calvo, V., Domínguez Lago, A., in press. El Arrepentimiento de San Pedro, de Francisco Collantes. Restauración y análisis de pigmentos. GE-Conservación.
  18. Ferro Vázquez, C., Kaal, J., Santos Arevalo, F., Criado Boado, F., 2018. Molecular fingerprinting of 14C dated soil organic matter fractions from archaeological settings in NW Spain. Radiocarbon 61, 101-130.
  19. Ferro Vázquez, C., Kaal, J., Stump, D., Lang, C., 2017. When is a terrace not a terrace? The importance of
    understanding landscape evolution in studies of terraced agriculture. Journal of Environmental Management 202, 500-513.
  20. Kaal, J., 2011. Identification, molecular characterisation and significance of fire residues in colluvial soils from Campo Lameiro (NW Spain). PhD Thesis. <http://digital.csic.es/handle/10261/35227>.
  21. Kaal, J., Martínez-Cortizas, A., Buurman, P., Criado Boado, F., 2008. 8000 yr of black carbon accumulation in a colluvial soil from NW Spain. Quaternary Research 69, 56-61.
  22. Kaal, J., Martínez Cortizas, A., Eckmeier, E., Costa Casais, M., Santos Estévez, M., Criado Boado, F., 2008.
    Holocene fire history of black colluvial soils revealed by pyrolysis-GC/MS: a case study from Campo Lameiro (NW Spain). Journal of Archaeological Science 35, 2133-2143.
  23. Kaal, J., Gianotti, C., Del Puerto, L., Criado-Boado, F., Rivas, M., 2019. Molecular features of organic matter in anthropogenic earthen mounds, canals and lagoons in the Pago Lindo archaeological complex (Tacuarembó, Uruguayan lowlands) are controlled by natural pedogenetic processes and fire practices. Journal of Archaeological Science: Reports 26, 101900.
  24. (unp) Dark bands in speleothems from the Atapuerca hills (Cueva Mayor) (w/ Eneko Iriarte)
  25. (unp) Reconstrucción paleoambiental en las Salinas Romanas de Vigo (w/ Rebeca Tallón Armada)
  26. (unp) Sediment trap strategies in the slopes of Engaruka (Tanzania) (w/ Cruz Ferro Vázquez)
  27. (unp) River adaptations for irrigation of terrace sequences (Ethiopia) (w/ Cruz Ferro Vázquez)
  28. Martín Seijo, M., Kaal, J., Rodríguez Calviño, M., Vázquez Collazo, S., 2019. First fibre identification and analysis of Middle Age textiles in northwest Iberia: the textile remains of the Pambre castle (Palas de Rei, Lugo). 
  29. Conference: Fibres in Early Textiles from Prehistory to AD 1600, Glasgow, June 2019
  30. .
  31. Kaal, J., Mailänder, S., 2018. Molecular properties of soil organic matter in dark buried colluvium from South Germany show abundance of fire residues from Early Neolithic vegetation clearance and slash and burn agriculture. Analytical Pyrolysis Letters APL004.
  32. Costa Casais, M.,  Martínez Cortizas, A., Kaal, J., Ferro Vázquez, C., Criado Boado, F., 2008. Depósitos coluviales holocenos del NO peninsular: geoarchivos para la reconstrucción de la dinámica geomorfológica. Trabajos de Geomorfología en España, X Reunión Nacional de Geomorfología, Cadiz.
  33. (unp) Bone and meat collagen in Palaeolithic caves of Abri Pataud and Asneau (w/ Freek Braadbaart)
  34. (unp) Detection of birch tar in Mesolithic hearth deposits (w/ Koen Deforce)
  35. (unp) Assessment of photo-degradation of synthetic polymers in designer objects (w/ Massimo Lazzari).

Other (unpublished) applications explored by Pyrolyscience include synthetic polymer identification (such as sampler residues in sediment cores or identification of nanoplastics in marine settings), identification of vehicle exhaust contamination in private buildings, tracking changes in organic matter chemistry along a wastewater purification pipeline, beer constituents characterization and food analysis. Pyrolyscience is always keen to explore the potential of analytical pyrolysis in new areas.